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Table I it is seen that the present work favors the 
theories developed by Landau4 and by Spitzer.8 How­
ever, no attempt is made to compare the present results 
with the theory (of transport phenomena) by Cohen, 
Spitzer, and Routly35 and by Spitzer and Harm36 be­
cause of the different nature of the problem involved.37 

The values of Ci and C2 determined by Anderson and 
Goldstein11 are extremely good considering that they 

35 R. S. Cohen, L. Spitzer, and P. McR. Routly, Phys. Rev. 80, 
230 (1950). 

36 L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953). 
37 For a Lorentz gas, the dc resistivity TJL cannot simply be 

written as rjL = nivei/ne2. [See L. Spitzer, Physics of Fully Ionized 
Gases (Interscience Publishers, Inc., New York, 1956), p. 82.] It 
can be shown from the Boltzmann transport equation that, in the 
case of Qm(v)=bv~i 

r)L = inv/ime2, 

where v = nb(v)~3 may be identified as vQ\ and (v) = [8>kTe/7rm2112 is 
the mean thermal velocity of the electrons. To equate TJL SO 
obtained to Spitzer's (Refs. 35, 36) more rigorous derivation of TJL 
yields 

There is an apparent discrepancy of vei so derived to that derived 
from req. (Ref. 8) Because of the approximate nature in the treat­
ment to deduce ve\ from TJL, we think that it is improper to compare 
the present result with the dc resistivity theory. 

INTRODUCTION 

EARLIER measurements in this laboratory,1 as well 
as independent measurements by O'Neal et ah2 

indicate an anomaly in the low-temperature specific 

t Work supported by U. S. Army Research Office. 
1 C. A. Bryant and P. H. Keesom, Phys. Rev. 123, 491 (1961). 
2 H. R. O'Neal, N. M. Senozan, and N. E. Phillips, Proceedings 

of the Eighth International Conference on Low Temperature Physics, 
edited by R. O. Davies (Butterworths Scientific Publications, 
Ltd., London, 1963). 

only did the experiment at one temperature (i.e., 
300°K). Yet the present experiment clearly demon­
strates the temperature dependence of electron-ion 
collision frequency for momentum transfer in an iso­
thermal plasma. 

In conclusion, the method of microwave diagnosis 
a decaying weakly ionized neon plasma at different gas 
temperatures provides a unique means of studying 
the fundamental processes of electron-neon atom and 
electron-ion collisions at very low energies. 
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heat of indium. At very low temperatures the super­
conducting-state specific heat drops below the lattice 
specific heat as obtained from normal-state measure­
ments. For a while there were indications that niobium 
showed a similar effect,3 but newer measurements4 

8 A. T. Hirshfeld, H. A. Leupold, and H. A. Boorse, Phys. Rev. 
127, 1501 (1962). 

4 B . J. C. van der Hoeven and P. H. Keesom, Phys. Rev. 134, 
A1320 (1964). 
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The specific heat of mercury and thallium were measured between 0.35 and 4.2 °K. In the normal state be­
low 0.7°K the mercury results are given by: Cn=\.l9T-{- 5.23T3 mj/mole deg. The coerhcienta of the T3 term 
corresponds to a value of the Debye parameter ®0 of 71.9°K. For temperatures higher than 0.7°K, the lattice 
specific heat deviates above the T3 law. A plot of S(T) is given. Below 0.6°K, the specific heat of thallium in 
the normal state is given by: Cn—1.47r-f-4.03T3 mj/mole deg. The corresponding value of O0 is 78.5°K. 
Above 0.6°K, the lattice specific heat of thallium shows a deviation below the pure T3 law, a result contrary , 
to that found for most solids. This would imply a deviation in the dispersion curve above the linear portion. 
A similar effect was observed in the specific heat of graphite which was explained on the basis of bond-bending 
modes of vibration. It is suggested that similar modes may explain this behavior for thallium. In the super­
conducting state the specific heat of both materials can be represented by a sum of the normal lattice term 
and a superconducting electronic term Ces of the form ayrcexp(—bTc/T). For mercury, values are obtained 
for a = 15 and 6= 1.64 with r c = 4.16°K; for thallium a = 9 and b=* 1.52 with r c = 2.38°K. In the case of thal­
lium the critical field as a function of temperature HC(T) is determined, with Hc(0) = 176.5 G. 
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show this not to be the case. I t was of interest to meas­
ure several other superconductors with low Debye 
parameters ©o and large Tc/&o ratios, where Tc is the 
critical temperature for a superconductor. Therefore 
the specific heat of lead was measured.5 No anomalous 
behavior for the lattice specific heat was observed, but 
the measurements yielded values of the electronic 
specific heat in the superconducting state Ces, much 
larger than one would expect on the basis of the BCS 
theory of superconductivity. 

Critical field determinations for mercury by Finne-
more6 and for lead by Decker et al.7 have shown that 
both mercury and lead have the opposite deviation of 
the critical field from a parabolic law than is observed 
for other superconductors. In addition both of these 
metals have very similar values for TC/®Q^0.07. Thus 
it seemed interesting to measure the low-temperature 
specific heat of Hg. 

The other superconductor chosen for investigation 
was thallium. Thallium is very similar to indium in 
that it is also a group I I I element with a low ©o value 
and a ratio of TV @0^0.03. Moreover, Tl has given 
indication of being an exception among soft super­
conductors, possessing an anomalous sign of dHc/dP, 
the effect of pressure on the critical field.8 

The results show that both Hg and Tl exhibit typical 
superconducting properties, following a dependence of 
Ces on temperature consistent with the predictions of 
the BCS theory, and having equal lattice specific heats 
in the normal and superconducting states. For both 
materials, however, the Debye parameter © as a func­
tion of temperature is interesting, and for the case of 
Tl may shed some light on its exceptional behavior. 

EXPERIMENT 

The apparatus used was the He3 cryostat described 
previously.9 A germanium thermometer, similar in 
composition to one discussed in an earlier publication10 

was used for the mercury measurements and pre­
liminary thallium measurements. For the final Tl 
measurements a nominal 1012, TOW Allen-Bradley 
carbon resistance thermometer was used. The calibra­
tion of the thermometers between 0.4 and 1.2°K was 
based on the 1962—He3 temperature scale of Sydoriak 
and Roberts,11 in conjunction with a paramagnetic salt 
thermometer below 0.5°K, and above 1.0°K, the 1958-

5 P. H. Keesom and B. J. C. van der Hoeven, Phys. Letters 3, 
360 (1963). # 

6 D. K. Finnemore, Ph.D. thesis, University of Illinois, 1961 
(unpublished). 

7 D. L. Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev. 
118, 127 (1960). 

8 H . Rohrer, Helv. Phys. Acta 33, 675 (1960), review article. 
9 G. M. Seidel and P. H. Keesom, Rev. Sci. Instr. 29, 606 (1958). 
10 B. J. C. van der Hoeven and P. H. Keesom, Phys. Rev. 130, 

1318 (1963). 
11 S. G. Sydoriak, T. R. Roberts, and R. H. Sherman, Proceed­

ings of the Eighth International Conference on Low Temperature 
Physics, edited by R. O. Da vies (Butterworths Scientific Publica­
tions Ltd., London, 1963). 

He4 temperature scale.12 An expansion of 1/T in powers 
of logR up to (logi?)3 was done in double precision arith­
metic on an IBM-7090 digital computer, using the 
method of least squares described by Moody and 
Rhodes.13 

The measurements of Hg were done in zero magnetic 
field and in a field of 1000 G. For Tl the measurements 
were done in zero field, 600 G, and 17 000 G. The 600 
and 17 000 G measurements yielded identical results 
within experimental accuracy. Provision for the high 
magnetic field measurements was made with the use of 
a new set of cans incorporating a superconducting 
NbsZr wire solenoid of inner diameter 2.5 cm. The 
working volume was 1.5 cm in diameter and 3.5 cm long. 

The germanium thermometer used in the mercury 
measurements followed a calibration curve very similar 
to that found for previous runs. Thus a small constant 
correction was applied to the value of InR in the calibra­
tion curve of 1/T versus InR, after checking points at 
4.2, 1.0, and 0.5°K. As the magnetoresistance correction 
for this thermometer was known, one was able to deter­
mine the calibration curve in 1000 G by making the 
appropriate shift from the zero field curve. The repro­
ducibility of this thermometer from run to run was 
excellent—less than 0.05 O at 4.2°K (where R was 
equal to 35 12) during a three-month period including 
four cyclings from room temperature to helium tem­
perature. The magnetoresistance in 1000 G ranged from 
minus 1% at 4.2°K, to minus 0.6% at 1.0°K, and 
0% at 0.5 °K. 

In preliminary measurements of Tl a germanium 
thermometer was mounted, but for the final results a 
carbon resistance thermometer was substituted. The 
carbon resistance was used since the magnetoresistance 
of the germanium was rather large in very high mag­
netic fields, namely, in 17 000 G, Ap/p varied from 
minus 2% at 4.2°K to plus 8% at 0.4°K. This is to be 
compared with the carbon resistance for which Ap/p 
varied from minus 1.2% at 4.2°K to less than plus 
0.5% at 0.4°K in the same field. For zero field the two 
thermometers gave identical results, and thus low-
temperature points from measurements in zero field 
using both thermometers have been used. The carbon 
thermometer was calibrated in separate runs at zero 
field, 600 G, and at 17 000 G. All measurements and 
calibrations for both Hg and Tl were done in a sequence 
of increasing field so that any possibility of trapped 
flux was avoided. 

The systematic error in specific heat due to inac­
curacies in the temperature scale and calibration, as 
well as addenda corrections, heater resistance, current, 
and timing errors should not exceed ± 2 % at the lowest 
temperature, and ± 1% at 4°K. Error limits stated for 
experimental quantities are those found from random 

12 F. G. Brickwedde, H. van Dijk, M. Durieux, J. R. Clement, 
and J. K. Logan, J. Res. Natl. Bur. Std. 64A, 1 (I960). 

13 D. E. Moody and P. Rhodes, Cryogenics 3, 77 (1963). 
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scatter of the data, which is observed to be ± 1% over 
the entire temperature range. 

SAMPLES 

The Hg sample (1.155 moles) was of 99.996% purity, 
triple-distilled Hg from Goldsmith Brothers. I t was 
poured into a cup which was ultrasonically machined 
out of a solid piece of pure silicon. A central rod of 0.6 
cm diameter was left standing in the center of the 3 cm 
inner diameter cup. The cup had a depth of 3.4 cm. The 
thermometer was glued with glyptal to the top of the 
rod, and the constantan heater wire glued around the 
outside of the cup. Total correction for the heat capacity 
of the addenda was less than 3 % of the total heat 
capacity of the mercury in the superconducting state 
at the lowest temperature. As the specific heat of silicon 
is well known,14 this should introduce less than 0 . 1 % 
error in the measurements. The good thermal contact 
developed between the Hg and the cup gave very rapid 
heat distribution over the system, but also introduced 
strains in the Hg. 

The first measurements of Tl were done with a 
sample (1.302 moles) prepared in a graphite boat in a 
vacuum furnace. As Tl oxidizes very rapidly in air, 
this sample was dipped in glyptal immediately after 
removal from a vacuum. I t was then mounted and 
measured. Difficulties were experienced in the magnetic 
field measurements. At the time these were speculated 
to be due either to impurities or inaccuracy involving a 
large glyptal addenda correction. This proved later to 
be due to the magnetoresistance of the germanium 
thermometer. 

A new sample (0.2116 moles) of 99.9907% purity 
was obtained from the Fairmont Chemical Company 
having a diameter of 1.3 cm and a length of 3.2 cm. 
The oxide layer was easily removed by scrubbing in 
distilled water. Thus this sample was stored in distilled 
water until just prior to mounting, then dried in helium 
gas and mounted, quickly pumping the surrounding 
space to a vacuum. Subsequent removal of an oxide 
layer before another run indicated a loss of weight due 
to oxidation of less than 0.1 mg. The results of measure­
ments of this sample, both with germanium ther­
mometer in zero field, and carbon thermometer for all 
three fields, are those reported here. Zero field measure­
ments for both samples gave identical results. Total 
correction for heat capacity of the addenda was less 
than 1.5% of the heat capacity of Tl in the super­
conducting state at the lowest temperature. 

RESULTS 

Mercury 

The specific heat of a superconductor in the super­
conducting state Cs and in the normal state Cn may 

be expressed as 

t-' s (-/ es\ v^ Is j 

Cn^yT+Cin, 

where Ces represents the superconducting electronic 
specific heat, C\n and Cu the lattice specific heat in 
the normal and superconducting states, respectively, 
and yT the normal-state electronic specific heat. The 
BCS theory of superconductivity contains the assump­
tion that the lattice term be equal in the two states, 
or that Cu is equal to Cin, and derives that Ces be of 
the form: 

Ces = yTca exp(~bTc/T), 

when 2<TC/T<6 and where a=8 .5 and 6=1.44. 
Furthermore, for low temperatures, the theory of 
lattice specific heats concludes that the temperature 
dependence of the lattice term can be represented by 
the following expansion: 

Ci=aT*+0T*+nT'+---. 

For sufficiently low temperatures one expects the lattice 
term to have a pure Tz behavior. Thus a plot of Cn/T 
versus T2 should have a limiting slope a, and an inter­
cept T at T 2 =0 . In Fig. 1 both Cn/T and Cs/T have 
been plotted as a function of T2 up to T2=1.0. Repre­
sentative values of the specific heat over the entire 
temperature range are listed in Table I. Below r 2 = 0 . 5 , 
Cn, measured in a magnetic field of 1000 G, may be 
given by: 

Cn= (1 .79±0.02)r+(5 .23±0.04)r 3 mj/mole deg. 

The coefficient of the linear term, 7, is in excellent 
agreement with critical field results by Finnemore6 of 
1.81 mj/mole deg2. The coefficient of the Ts term a 
yields a value of the Debye parameter at 0°K, @0, of 
71.9±0.2°K. Calorimetric measurements by Douglass 
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14 P. H. Keesom and G. M. Seidel, Phys. Rev. 113, 33 (1959). FIG. 1. Specific heat of mercury between 0.35*and.I.0oK, 
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TABLE I. Specific heat of mercury. (C is in mj/mole deg.) 

T, °K 
C 

(11 = 0) T,°K 
C 

(#=1000G) 

0.3522 
0.3669 
0.3968 
0.4243 
0.4529 
0.4809 
0.5173 
0.5766 
0.6328 
0.7189 
0.7790 
0.8480 
0.9228 
0.9947 
1.178 
1.286 
1.451 
1.665 
1.822 
2.000 
2.241 
2.485 
2.842 
3.230 
3.499 
3.746 
3.956 
4.121 
4.273 

0.233 
0.263 
0.336 
0.406 
0.488 
0.587 
0.729 
1.001 
1.323 
1.968 
2.535 
3.383 
4.542 
5.943 

11.33 
16.62 
27.33 
47.93 
68.71 
98.15 

150.3 
216.0 
335.6 
495.6 
626.8 
754.8 
874.7 
965.6 

1036.7 

0.4745 
0.5069 
0.5470 
0.6044 
0.6684 
0.7505 
0.7984 
0.8538 
0.9005 
0.9580 
1.021 
1.172 
1.284 
1.399 
1.554 
1.738 
1.896 
2.092 
2.301 
2.535 
2.837 
3.139 
3.534 
3.948 
4.341 

1.406 
1.592 
1.828 
2.230 
2.750 
3.583 
4.179 
4.993 
5.677 
6.825 
8.249 

12.99 
18.26 
25.20 
37.69 
57.70 
80.25 

115.7 
162.4 
226.2 
326.2 
446.8 
627.6 
852.0 

1084.3 

et al.15 in the superconducting state have yielded a 
value of 0o of 73°K. 

The electronic specific heat of mercury in the super­
conducting state Ces becomes negligible compared with 
the lattice specific heat Cu, for values of Tc/T>5. 
Below J T 2 = 0 . 7 , therefore, the total specific heat in the 
superconducting state should be equal to the lattice 
specific heat. Because the T5 term dies out below T2 

= 0.5, the pure Tz region is reached, and then the 
limiting slopes of Cs/T and Cn/T in Fig. 1 should be 
equal. Indeed this is the case. Therefore the assumption 
that Cn is equal to C\n is correct for Hg. As a result 
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FIG. 2. © versus T for mercury. 

15 R. L. Douglass, R. G. Petersen, and N. E. Phillips, Proceedings 
of the Seventh International Conference on Low Temperature Physics, 
edited by G. M. Graham and A. C. Hollis Hallett (University of 
Toronto Press, Toronto, 1961). 
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Ces may be calculated by the following method: 

Taking smoothed curves through the data, values of 
Ces are obtained. A plot of ln(Ces/yTc) versus (Tc/T), 
when 2 < T c / r < 4 . 5 , yields values of a = 1 5 ± l and 
&=1.64±0.10. 

Following Goodman,16 the specific heat energy gap 
for Hg at 0°K, 2e(0), may be estimated by assuming b 
as a measure of this energy gap: 

2e(0) = (ft/1.44) (3.50kTc) = 3.9SkTc (1) 

This compares very favorably with 3.96kTc found from 
critical field measurements by Finnemore and reason­
ably with A.6kTc from infrared absorption measure­
ments by Richards and Tinkham.17 All three deter­
minations indicate a larger gap than that predicted by 
the BCS theory. 

As a result of strains developed while cooling the 
sample the transition from the superconducting to 
normal state in zero magnetic field was spread out from 
4.11 to 4.21°K. The average value of Tc is 4.16°K, in 
good agreement with 4.154°K found by Finnemore. 

TABLE II . Specific heat of thallium. (C is in mj/mole deg.) 

r, °K 
0.4110 
0.4325 
0.4691 
0.4895 
0.5154 
0.5662 
0.6015 
0.6442 
0.6886 
0.7274 
0.8124 
0.8591 
0.9297 
0.9779 
1.031 
1.140 
1.260 
1.421 
1.519 
1.599 
1.726 
1.839 
1.932 
2.014 
2.133 
2.232 
2.327 
2.370 
2.419 
2.487 
2.572 
2.738 
3.001 
3.280 
3.670 
4.103 

C 
(H = 0) 

0.279 
0.324 
0.415 
0.478 
0.561 
0.758 
0.917 

* 1.157 
1.421 
1.691 
2.408 
2.865 
3.640 
4.213 
4.955 
6.682 
8.907 

12.63 
15.12 
17.46 
21.41 
25.44 
29.15 
32.80 
38.20 
43.63 
48.66 
50.88 
48.49 
52.43 
56.93 
67.80 
87.96 

114.6 
160.5 
224.9 

T, °K 

0.5159 
0.5589 
0.5868 
0.6223 
0.6556 
0.7106 
0.7709 
0.8499 
0.9431 
1.036 
1.162 
1.222 
1.289 
1.382 
1.434 
1.538 
1.647 
1.718 
1.798 
1.932 
2.154 
2.233 
2.520 
2.778 

C 
( # = 6 0 O G ; 

1.341 
1.526 
1.677 
1.883 
2.084 
2.423 
2.875 
3.575 
4.486 
5.519 
7.333 
8.266 
9.405 

11.15 
12.22 
14.57 
17.28 
19.25 
21.67 
26.30 
34.76 
38.53 
53.69 
70.08 

T, °K 

0.6407 
0.7250 
0.7944 
0.9167 
0.9925 
1.109 
1.204 
1.318 
1.604 
1.852 
2.073 
2.259 
2.361 
2.443 
2.600 

C 
( # = 1 7 000 G) 

2.019 
2.565 
3.101 
4.251 
5.065 
6.588 
8.057 

10.03 
16.33 
23.59 
31.76 
39.65 
45.07 
49.22 
58.64 

1 6 B. B. Goodman, C. R. Acad. Sci. (France) 244, 2899 (1957). 
17 P. L. Richards and M. Tinkham, Phys. Rev. 119, 575 (1960). 
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TABLE III . Results of measurements on mercury and thallium. 

Measurement 

Temp. 
range 

(deg K) 
7 

(mj/mole deg2) 
Oo 

(deg K) a b 
rc,°K 

(1958 scale) 
Ho 
(G) 

~(dHc/dT)T 
(G/deg) 

Mercury 
These results 0.35-4.2 1.79 ±0.02 
Finnemorea 0.30-4.2 1.809±0.012 

Douglass et al.c 0.1 -0.5 73 
Richards and Tinkhamd 1.0 -4.2 

Thallium 
These results 
Maxwell and Lutese 

Snider and Nicolf 

7l.9±0.2 15 1.64 4.16 380 ± 6 0 
1.63b 4.154±0.001 410.88± 0.12 203.3b 

0.40-4.2 1.47 ±0.02 78.5±0.2 
1.2 -4.2 1.53 
1.1 - 4 2 2^56 ±0.35 86.6±0.3 

1.9b 

1.52 2.38 
2.38 
2.36 

176.5 ± 3.8 128 
172.8 ± 1.4 125.8±5.( 

a Reference 6. 
b Calculated or estimated from data. 
c Reference 15. 

d Reference 17. 
e Reference 19. 
{ Reference 18. 

I t is of interest to calculate the entropy difference, 
AS(T), between the normal and superconducting states, 
as this in turn may be integrated to yield the critical 
field as a function of temperature HC(T). The thermo­
dynamic relations are 

H?(T) 

where 

AS(T) = Sn(T)-Ss{T) = 

= ( — ) [ AS(T)dT, 
\VJJT. 

J \S-s n ^ s) 

=/.P T J 
it. 

Vm is the molar volume which for Hg is 13.85 cm3/mole. 
For the purposes of entropy calculation, the smoothed 
curves of a plot of Cs/T and Cn/T versus T were used. 
At Tc the difference in the specific heats in the two 
states is represented by the Rutgers equation: 

a-[-(C.-Cn)- j /Vm\r/dHc\ 

T \ T , \4TT •Jl\dT ) 1 
' 2V-J 

A value of {dHc/dT)Te can be calculated from Finne-
more's data and is found to be —203.3 G/deg. This 
corresponds to (AC/T)r ,=4.56 mj/mole deg2. The 
curves have been drawn using this value of (AC/T)TC. 
Within the accuracy of the measurements, a value of 
AS(Tc) — 0 is found, consistent with a second-order 
phase transition. 

As the lattice specific heat of Hg is large compared 
with the electronic specific heat, the maximum value 
of AS(T) amounts to approximately 2 % of the total 
entropy of the Hg at this temperature. The random 
scatter in the data is about 1%. Therefore AS(T) be­
comes increasingly inaccurate above 1°K. A very rough 
estimate of Hc(0) can be calculated by integration of 
AS(T) from Tc to 0°K, yielding a value of 380±60 G. 
This range includes Finnemore's value of 410.88 G. 

One of the more interesting facets of these measure­
ments is the behavior of the Debye parameter 0 as a 
function of temperature. As mentioned earlier the lattice 
specific heat C\ is normally expressed as an expansion 

in odd powers of temperature. I t may also be repre­
sented by 

Cz= 1 9 4 4 [ r / B ( r ) ] 3 J/mole deg, 

where the deviation of Ci from a Tz law is given by the 
temperature variation of ®(T). In Fig. 2 is plotted 
@(r) versus T up to 4.2°K for Hg. At r = 0 . 7 ° K , 0 
begins to deviate from the value of 0°K to a lower 
value, corresponding to the onset of a positive Th term. 
A minimum of 0 = 51.5°K occurs at r = 3 . 2 ° K . I t then 
begins to increase to a value at T= 4.2°K of 0 = 52.6°K. 

Thallium 

Representative values for the specific heat of Tl are 
listed in Table II . A plot of Cs/T and Cn/T versus T2 

is given in Fig. 3. As the normal-state data exhibit a 
deviation from the Tz law at a rather low temperature, 

4 
T2(degK)2 

FIG. 3. Specific heat of thallium between 0.4 and 2.7°K. 
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below which only four points have been measured, a 
much more accurate determination of the slope a may 
be made using Cs/T. The zero intercept of Cs/T is well 
defined, and more points are available at lower tem­
peratures. A line of the same slope is then drawn through 
the four lowest points of the CJT data in order to 
determine 7, the intercept at T2=0. In order to use this 
method of obtaining a, one must be certain that C\n 

is equal to Cis, and this the data support. 
Below r 2 = 0 . 4 , the normal-state specific heat is 

given by 

Using the thermodynamic relations discussed earlier, 
a plot of AS(T) is given in Fig. 4. The value of AS(TC) 
is zero, consistent with a second-order phase transition. 
Integration of this smoothed curve gives values for 
HC(T). The value obtained for Hc(0) is 176.5±3.8 G 
compared with the value of Maxwell and Lutes of 
172.8 G. The deviation of HC(T) from the parabolic 
law is shown in Fig. 5. 

Goodman20 derived an expression for the energy gap 
at 0°K as a function of the critical field and the elec­
tronic specific heat: 

C n =(1 .47db0 .02) r+(4 .03±0 .04)PmJ/mole deg. 2e(0)/kTc= 7 . 2 5 6 ^ , where r}=VmHc2(0)/(S7ryTc
2). 

The coefficient of the T 3 term corresponds to a value 
of ©0 of 78.5dz0.2°K. Both the value of 7 of 1.47 m j / 
mole deg2 and that of ©0 are in disagreement with re­
sults of Snider and Nicol18 for Tl. This discrepancy 
seems reasonable, however, since they measured only 
down to 1.2°K. Due to the deviation of the lattice 
specific heat from the pure Td law, any evaluation of 7 
and ©0 from data above T 2=0.4 will yield values much 
larger than those given above. 

Calculation of Ces for Tl is done in a manner similar 
to that for Hg. This leads to values for a = 9 ± l and 
6=1.52±0.10 in the range where 1 .6<ZVT<4 . Using 
Eq. (1), this yields a value of the energy gap at 0°K 
of 3.69kTc. 

A sharp transition in the zero field specific heat 
occurs at a value of JTC = 2 . 3 8 ° K , identical with the 
value determined from critical field measurements by 
Maxwell and Lutes19 of 2.38°K (corrected to the 1958 
He4 temperature scale). Snider and Nicol found a value 
of 2.36°K. The jump in the specific heat at Tc, (AC/T) Tc, 
is 2.21 mJ/mole deg2. Making use of the Rutgers for­
mula, where Vm= 16.9 cm3/mole, one finds a value of 
(dHc/dT)Tc of 128 G/deg. This is well within the limits 
of the measurements of Maxwell and Lutes who find a 
value of (dHc/dT)Tc of 125.8±5.6 G/deg. 

a, '-2 

m
J/

m
ol

e 
0 

*—* c/) 

< 
0.4 

_ 

1 
Thallium v*""*"*^ 

1 

1 

\ \ 

\ _J 
FIG. 4. Entropy plot 

for thallium. 

I 2 
T(degK) 

Using the value of Hc(0) of Maxwell and Lutes and the 
7 and Tc values found for this work, it is found that 

2e(0) = 3.64&rc. 

This value is in agreement with the specific heat energy 
gap, 3.69kTc. 

Using values of the energy gap determined in this 
manner, Goodman20 also found a linear relation between 
the energy gap, 2e(0), and ln(Tc/@o) for all super-

<̂» 0 
X 
pQ03 

0 
X 
10.02 

P 
H0.0I 

*-̂  

-

-

-

1 1 1 

Thallium 

' 1 1 1 

1 1 

_^^ -

>*. — 

\ 

1 N 
0.2 0.4 0.6 

(T/Tcf 
0J3 1.0 

FIG. 5. Deviation of critical field of thallium from parabola. 

conductors. Tl was the only superconductor which fell 
far outside the range of this plot. These newer values 
of 2e(0) and ©0 remove the discrepancy. 

I t was noted previously that the variation of the 
Debye parameter © with temperature is a measure of 
the departure of the lattice specific heat from a Tz 

law. In Fig. 6 has been plotted © as a function of T for 
Tl. The positive deviation of © from @0, at T=0.7°K, 
indicates a negative deviation from the T3 law. © 
reaches a maximum value of 85.6°K at T— 2.8°K, de­
creasing thereafter to a value of 85.0°K at r = 4 ° K . 
From the graph it becomes clear that Snider and Nicol 
could draw a straight line through their data, as in 
their temperature range, © is nearly constant, although 
different from ©0. 

DISCUSSION 

The negative deviation of the normal-state specific 
heat of Tl from a Tz law is unusual. Many solids show 
deviations from a Tz law at similar values of ®o/T, 

18 J. L. Snider and J. Nicol, Phys. Rev. 105, 1242 (1957). 
w E, Maxwell and O. S. Lutes, Phys. Rev. 95, 333 (1954). 20B. B, Goodman, C. R. Acad, Sci. (France) 246, 3031 (1958). 
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but in a positive direction. One might inquire if the 
negative deviation for Tl is electronic in origin. The 
relation between the electronic specific heat in the 
normal state yT and the superconducting state Ces has 
been calculated by the BCS theory. I t is highly unlikely 
that any extra terms in the normal-state electronic 
specific heat would not drastically alter the form of Ces 

without completely violating predictions of the very 
successful BCS theory. Other causes, such as nuclear 
contributions, crystalline phase changes, or impurity 
effects appear unlikely and therefore one is forced to 
conclude that the negative deviation from the Ts law 
is a lattice effect. 

In a discussion of the low-temperature specific heat 
of solids, Blackman21 made some observations about the 
expected temperature dependence. If one examines a 
typical dispersion curve for acoustic phonons (a> versus 
k), the low-frequency end of the curve is a straight line. 
Deviations from the linear relation between co and k 
should be in such a direction as to intersect the bound­
ary of the Brillouin zone in a perpendicular direction 
(dco/dk\Bz=0). For the simplest case, this implies a 
gradual reduction of the slope of the dispersion curve 
to a value of zero slope at the Brillouin zone boundary. 
In terms of the phonon density of states [_g(v) versus v}} 

the linear portion of the dispersion curve corresponds 
to a v2 dependence. Deviations from the v2 dependence 
are inversely related to dco/dk, and thus the portion of 
decreasing slope of the dispersion curve corresponds to 
a deviation above the v2 dependence. A pure v2 fre­
quency density yields a T3 law for the specific heat, and 
deviations above the v2 curve correspond to positive 
deviations from the T3 law. In this manner Blackman 
shows that one should expect the initial deviation from 
the pure Tz law to be positive, as is observed for nearly 
all solids. 

There is no restriction, however, which prevents the 
dispersion curve from having an upward deviation from 
the linear portion, which would lead to a negative 
deviation from the T3 law, as is observed for Tl. I t is 
only required that such a trend in the dispersion curve 
reverse itself so that the slope goes to zero at the 
Brillouin zone boundary. 

An example of another material which shows a similar 
negative deviation from the J"3 law is graphite. For 
graphite this effect was explained on the basis of 
valence bond-bending modes (out-of-plane modes), as 
distinct from the usual transverse and longitudinal 
modes associated with the low-temperature continuum 
model. Bond-bending modes are introduced because the 

21 M. Blackman, Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1955), Vol. VII, Part 1. 

FIG. 6. ® versus T for thallium. 

interaction between planes in the hexagonal graphite 
lattice is weak as compared to forces in the planes. 
This leads to a term proportional to k2 in the dispersion 
equation. A quadratic term in the dispersion equation 
at low frequency will introduce an upward deviation 
from the linear portion to the dispersion curve, as 
described in the preceeding paragraph. Consequently, 
the phonon spectrum for these bending modes goes 
from a v2 to v dependence, and yields a negative devia­
tion from the T* law for the specific heat. For graphite 
this transition occurs at a temperature corresponding 
to 0O/3OO. 

Naturally for Tl the atomic bonding is metallic and 
not covalent as for graphite. However, it is felt that 
similar out-of-plane modes may occur for Tl if the 
interplane interaction is weak, even though the nature 
of atomic bonding is different. There are indications 
that Tl does have a weak interaction between planes. 
Crystal anisotropy of this sort has been proposed by 
Cody22 to explain the direction dependence of the vol­
ume change between the normal and superconducting 
states. The temperature at which the deviation from a 
Tz law appears corresponds to a value of ®0/100, a 
reasonable value for such bending modes. 

Since the specific heat measures only bulk properties 
of a material, it is impossible to make any definite 
conclusions, but only suggest possible explanations. 
Other methods offer a more promising measure of lattice 
anisotropy. Velocity of sound measurements give values 
for the elastic constants, but will not observe dispersive 
effects. Neutron diffraction yields a method for deter­
mining the dispersion curve, but at too high frequencies. 
Since the increase of © from ©0 for Tl occurs over a 
rather narrow temperature range, the corresponding 
drop in the phonon density spectrum could be sharp. If 
such is the case, tunneling measurements may be able 
to observe this discontinuity in the phonon spectrum. 

22 G. D. Cody, Phys. Rev. I l l , 1078 (1958). 


